Metal-dependent DNA cleavage mechanism of the I-CreI LAGLIDADG homing endonuclease.
نویسندگان
چکیده
The LAGLIDADG homing endonucleases include free-standing homodimers, pseudosymmetric monomers, and related enzyme domains embedded within inteins. DNA-bound structures of homodimeric I-CreI and monomeric I-SceI indicate that three catalytic divalent metal ions are distributed across a pair of overlapping active sites, with one shared metal participating in both strand cleavage reactions. These structures differ in the precise position and binding interactions of the metals. We have studied the metal dependence for the I-CreI homodimer using site-directed mutagenesis of active site residues and assays of binding affinity and cleavage activity. We have also reassessed the binding of a nonactivating metal ion (calcium) in the wild-type enzyme-substrate complex, and determined the DNA-bound structure of two inactive enzyme mutants. The conclusion of these studies is that the catalytic mechanism of symmetric LAGLIDADG homing endonucleases, and probably many of their monomeric cousins, involves a canonical two-metal mechanism in each of two active sites, which are chemically and structurally tethered to one another by a shared metal ion. Failure to occupy the shared metal site, as observed in the presence of calcium or when the metal-binding side chain from the LAGLIDADG motif (Asp 20) is mutated to asparagine, prevents cleavage by the enzyme.
منابع مشابه
DNA recognition and cleavage by the LAGLIDADG homing endonuclease I-CreI.
The structure of the LAGLIDADG intron-encoded homing endonuclease I-CreI bound to homing site DNA has been determined. The interface is formed by an extended, concave beta sheet from each enzyme monomer that contacts each DNA half-site, resulting in direct side-chain contacts to 18 of the 24 base pairs across the full-length homing site. The structure indicates that I-CreI is optimized to its r...
متن کاملGeneration of single-chain LAGLIDADG homing endonucleases from native homodimeric precursor proteins
Homing endonucleases (HEs) cut long DNA target sites with high specificity to initiate and target the lateral transfer of mobile introns or inteins. This high site specificity of HEs makes them attractive reagents for gene targeting to promote DNA modification or repair. We have generated several hundred catalytically active, monomerized versions of the well-characterized homodimeric I-CreI and...
متن کاملComprehensive homing endonuclease target site specificity profiling reveals evolutionary constraints and enables genome engineering applications
Homing endonucleases (HEs) promote the evolutionary persistence of selfish DNA elements by catalyzing element lateral transfer into new host organisms. The high site specificity of this lateral transfer reaction, termed homing, reflects both the length (14-40 bp) and the limited tolerance of target or homing sites for base pair changes. In order to better understand molecular determinants of ho...
متن کاملMycobacterium tuberculosis RecA intein, a LAGLIDADG homing endonuclease, displays Mn(2+) and DNA-dependent ATPase activity.
Mycobacterium tuberculosis RecA intein (PI-MtuI), a LAGLIDADG homing endonuclease, displays dual target specificity in response to alternative cofactors. While both ATP and Mn(2+) were required for optimal cleavage of an inteinless recA allele (hereafter referred to as cognate DNA), Mg(2+) alone was sufficient for cleavage of ectopic DNA sites. In this study, we have explored the ability of PI-...
متن کاملRapid evolution of the DNA-binding site in LAGLIDADG homing endonucleases.
Sequence analysis of chloroplast and mitochondrial large subunit rRNA genes from over 75 green algae disclosed 28 new group I intron-encoded proteins carrying a single LAGLIDADG motif. These putative homing endonucleases form four subfamilies of homologous enzymes, with the members of each subfamily being encoded by introns sharing the same insertion site. We showed that four divergent endonucl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 43 44 شماره
صفحات -
تاریخ انتشار 2004